
1 Введение 2
2 Назначение и область применения 4
3 Технические характеристики 4
4 Структурная схема передатчика 5
5 Разработка и расчёт основных блоков схемы 7
5.1 Параметры НС – кода 7
5.2 Выбор комбинаций НС – кода 10
5.2.1 1 –я посылка 11
5.2.2 2-ая посылка 14
5.3 Выбор АЦП 16
5.4 Расчёт делителя напряжения 19
5.5 Реализация регистра 20
5.6 Разработка логического узла 20
5.7 Выбор передаваемых частот и полос пропускания 21
5.8 Расчёт генераторов гармонических колебаний 23
5.9 Расчёт полосовых фильтров 25
5.10 Разработка блока управления 27
6 Основные требования к алгоритмам диагностирования 29
7 Техническая диагностика и прогнозирование 32
8 Связь технической диагностики с надежностью и качеством 35
9 Основы теории технической диагностики 38
10 Разработка технического диагностирования 40
11 Разработка схемы диагностирования 44
12 Диагностирование работоспособности системы 46
13 Заключение 48
49
50
Приложение А(задание на бакалаврскую работу)__________________
Приложение Б (список литературы)______________________________
1 Введение
Проектирование современных систем телемеханики в корне отличается от тех же систем спроектированных буквально несколько лет назад. Это объясняется в первую очередь тем, что для построения современных систем телемеханики широко используются интегральные микросхемы и средства вычислительной техники.
Использование современных технологий неизбежно влечёт к повышению скорости работы систем, улучшения качества и размеров систем, повышению точности и т.д., по сравнению со своими предшественниками, выполненными на транзисторах и диодах. Так кроме традиционных функций (телеуправление, телеизмерение, телесигнализация, телерегулирование и передача статистической информации) они могут осуществлять предварительный отбор информации после её сбора, образовывать сигналы, оптимальные для передачи по данному каналу связи, принимать решения для управления местной автоматикой, выдавать по выбору и повторно информацию диспетчеру для визуального контроля и регулирования и т.д.
Кодирование применяемое в современных системах телемеханики позволяет повышать их защищённость от помех за счёт более совершенных кодов которые в схемной реализации более просты чем их соратники, а сжатие данных позволяет увеличить объём передаваемой информации по тем же каналам связи.
Устройства телеизмерения (ТИ) осуществляют передачу на расстояние значений измеряемых величин, их регистрации или ввода данных в автоматическое устройство. Все системы ТИ подразделяют на аналоговые и дискретные. Дискретные системы ТИ наиболее близки по принципам построения схем и используемой аппаратуре к системам телеуправления. Характерная особенность дискретных систем – осуществление в передающем устройстве операции квантования по уровню. При этом вместо передачи непрерывного ряда значений измеряемой величины передаётся конечное её значений (уровней), каждому из которых соответствует при кодировании определённая кодовая комбинация. В зависимости от принципа кодирования различают частотно-импульсные (использующие числовой код) и кодово-импульсные (использующие многоэлементный код) дискретные системы ТИ.
К аналоговым системам принято относить такие системы ТИ, в которых каждому из непрерывного ряда значений измеряемой величины соответствует вполне определённый сигнал ТИ.
Основное преимущество дискретных систем по сравнению с аналоговыми – незначительное влияние изменения параметров линии связи и помех в каналах связи на передаваемые сигналы.
К преимуществам кодово-импульсных систем ТИ следует отнести высокую помехоустойчивость и отсутствие принципиальных ограничений для повышения точности телепередачи, обусловленные дискретным характером сигналов. Кроме того, такие системы приспособлены для вывода информации в цифровой форме.
В кодово-импульсных системах кодируется либо угол поворота стрелки первичного измерительного прибора, либо унифицированный электрический параметр (ток или напряжение), в которой предварительно преобразуется измеряемая величина.
Задача кодирования сообщения в общем случае заключается в согласовании свойств источника сообщений со свойствами канала связи. Различают кодирование источника сообщений (эффективное кодирование) и кодирование, учитывающее влияние помех в канале связи (помехоустойчивое кодирование).
2 Назначение и область применения
Устройства телеизмерения осуществляют передачу на расстояние значений измеряемых величин, их регистрации или ввода данных в автоматическое устройство. В основном такие системы применяются в условиях, когда передача данных затруднительна в прямом виде, тогда стаёт вопрос о применении таких систем.
3 Технические характеристики
Основные технические характеристики разрабатываемого передатчика системы телеизмерения имеют следующие значения:
- диапазон изменения измеряемой величины, В | 0 – 15 |
- допустимая приведённая погрешность измерения, В | 2.8 |
- максимальная частота изменения измеряемого напряжения, Гц | 100 |
- метод разделения сигналов | Частотно-временной |
- метод избирания | Частотно-распределительно-комбинационный |
Вид проектируемого устройства | Передатчик |
- код | Неприводимый сменно-посылочный (НС) |
4 Структурная схема передатчика
Разрабатываемая схема приёмника должна осуществлять передачу полученной информации без временных интервалов между посылками, а также производить её обработку с наименьшим временем.
Структурная схема изображена на рисунке 4.1.
АЦП
Делитель напряжения
Uвх
Блок
управле
ния
Uвых
Преобразование в частоту
Кодирование
Тригеры
2-я посылка
1-я посылка
Рисунок 4.1
Измеряемое напряжение поступает на вход делителя напряжения, предназначенного для согласования уровня входного сигнала с входом АЦП. Преобразованное напряжение поступает на АЦП, с выхода которого часть двоичного кода, соответствующая первой посылке, сразу же подаётся на блок кодирования (блок логических устройств), а остальная часть – на триггеры, выступающие в роли регистра. Блок регистров предназначен для хранения двоичного кода в то время, когда выходы АЦП находятся в Z – состоянии, что позволяет осуществлять беспрерывную передачу. С выхода блока регистров двоичный код поступает на логический блок (блок кодирования), где происходит преобразование двоичного кода в неприводимый сменно-посылочный код. Сигналы с выхода логического блока поступают на блок преобразования в частоту логических сигналов, где находятся генераторы частоты, ключи включения генераторов, полосовые фильтры и сумматор. Колебания с выходов полосовых фильтров поступают на сумматор, с выхода которого в линию поступает выходной сигнал. Работой вышеперечисленных блоков управляет блок управления, который должен производить следующие операции:
запуск АЦП на преобразование;
управление передачей данных с АЦП;
управлять записью в регистры;
управлять очерёдностью выдачи в линию посылок.
5 Разработка и расчёт основных блоков схемы
5.1 Параметры НС – кода
Допустимая погрешность для АЦП определяется по следующей формуле:
g=0,5gдоп , (5.1)
g=0,5*2.8 = 1.4%.
Количество уровней квантования АЦП (N):
N = 100/g + 1, (5.2)
N = 100/1.4 + 1 = 72.4 .
Поскольку такая разрядность не может быть достигнута то принимаем N=128.
Разрядность кодовой комбинации (n):
n = log2 N, (5.3).
n = log2 128 = 7.
Для преобразования комбинаций двоичного кода (ДК) в НС – код комбинации ДК разбиваются на n групп, число которых равно числу посылок НС – кода nв.
Комбинациям ДК каждой группы присваиваются комбинации частот из соответствующих групп сочетаний, образованных для построения посылок НС – кода .При разбиении разрядов ДК на группы, а так же при формировании комбинаций посылок НС – кода следует учитывать, что число возможных перестановок в группе (комбинаций ДК) не должно превышать количества комбинаций соответствующих посылок:
, (5.4)
где
Niгрдк – число комбинаций i – ой группы ДК;
Nnвi – количество комбинаций i – ой посылки НС.
Выбор числа частотных позиций nч для построения комбинаций посылок НС – кода производится из условия:
. (5.5)
Примем nв = 3 (nв – количество посылок).
Для преобразования семиразрядного ДК в НС – код , у которого nв=3 mч=2, количество необходимых комбинаций:
Nком
Программирование и компьютеры
- Автоматизация неразрушающего контроля на сложных технологических объектах
- Автоматизация учета исполнения бюджета Краснодарского края
- Автоматизированная информационная система «Учет экономической деятельности мукомольного цеха»
- Автоматизированная система управления комбината Белшина
- Автоматизированная справочно-информационная система учета и контроля поставок на предприятие
- Автоматизированное рабочее место
- АСУ целевыми программами в некоммерческой организации
- Базы данных. Создание форм и отчетов (на примере ACCESS)
- Бакалаврская работа. Программная модель 32-разядной МЭВМ фирмы Motorola
- Блок управления двигателем на МК
- Видеоконференции в сети Internet
- Вирус- проклятый и злобный. Антивирус- любимый и хороший
- Графический интерфейс пользователя WINDOWS 95
- Иерархические структуры в реляционных базах данных
- МикроЭВМ на базе микропроцессора КР580ВМ80
- Обучающая система методам компактной диагностики
- Объектно-ориентированная СУБД (прототип)
- Организация удаленного доступа к распределенным базам данных
- Основные понятия для работы в Internet
- Основы локальных компьютерных сетей
- Передающее устройство систем телеизмерения
- Перенос Базы Данных на WEB-сервер
- Подключение графопостроителя МДГ 105 к IBM PC
- Проблемы телекоммуникаций Банка России
- Проект высокоскоростной локальной вычислительной сети предприятия
- Проект информационно-вычислительной сети Мелитопольского межрайонного онкологического диспансера
- Развитие операционной системы для ПК на современном этапе
- Разработка автоматизированной системы «Смета»
- Разработка алгоритмов и диалоговых программ автоматизированного формирования